Výzkum se zabýval charakterizací vlastností topologických izolátorů.
Nové možnosti bezztrátového přenosu elektrického signálu, které se dají využít například v procesorech kvantových počítačů, testovala na nových sloučeninách mezinárodní skupina vědců včetně odborníků z Masarykovy univerzity (MU), Západočeské univerzity v Plzni (ZČU) a institutu CEITEC Vysokého učení technického (VUT). Experimentální práci, která se zabývala charakterizací vlastností takzvaných topologických izolátorů, tedy materiálů, které vedou elektrický proud pouze na povrchu a jinak se chovají jako izolanty, zveřejnil vědecký časopis Nature. Výsledky by mohly v budoucnu pomoci se sestrojením kvantového počítače.
Odborníci z Německa, Rakouska a České republiky ověřovali vlastnosti telluridu bismutu s příměsí manganu. Právě mangan změnil díky svému magnetismu strukturu látky, která je tak odolná vůči vnějším vlivům a její činnost se dá regulovat. Chová se tak jako supravodič. „Tyto materiály jsou charakteristické svou strukturou, která se dá přirovnat k lístkovému těstu. Jsou uspořádané ve vrstvách o síle pěti nebo sedmi atomů, tedy asi jednoho nanometru. Vrstvy o sedmi atomech se tvoří právě díky přidání manganu, který se do struktury zabudovává přednostně ve středu vrstev o sedmi atomech. Právě to zlepšuje požadované vlastnosti materiálu,“ uvedl Ondřej Caha z Přírodovědecké fakulty MU a Centra pokročilých nano a mikrotechnologií CEITEC MU, který pracoval mimo jiné na charakterizaci nového materiálu.
Mezinárodnímu týmu vědců se poprvé podařilo detekovat a měřit takzvanou energetickou mezeru vytvořenou přidáním manganu, a to pomocí spinově rozlišené fotoelektronové spektroskopie na synchrotronu BESSY II. Samotná měření probíhala v několika institutech, mimo jiné ve Výzkumné infrastruktuře CEITEC Nano na VUT. Zde odborníci využili jeden z nejvýkonnějších mikroskopů na světě, a to transmisní elektronový mikroskop TITAN, díky kterému lze přímo sledovat atomární strukturu materiálu.
Rozsáhlé experimenty zahrnující přípravu materiálů, testování jejich vlastností a jejich popis začaly už v roce 2012 a trvaly zhruba pět let. Jde tak o důkladné ověření jejich funkčnosti, především pak tzv. povrchových stavů materiálu, což jsou elektronové stavy v okrajových atomech pevné látky, které se jinak v materiálu nevyskytují. „V tomto případě jde právě o možnost vedení proudu bez odporu. Zatím se nám ale podařilo prokázat splnění nutných podmínek jen za extrémně nízkých teplot, tedy při deseti stupních Kelvina, což je asi -260 stupňů Celsia,“ podotkl Caha. Vědci budou ve výzkumu materiálů dál pokračovat, testují i nové kombinace látek tak, aby získali požadované vlastnosti za příznivějších teplot.